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ABSTRACT

 This paper develops and applies a
nonparametric bootstrap methodology for
setting inventory reorder points and a simple
inequality for identifying existing reorder
points that are unreasonably high. We
demonstrate that an empirically-based
bootstrap method is both feasible and
calculable for large inventories by applying
it to the 1st Marine Expeditionary Force
General Account, an inventory consisting of
$20-30 million of stock for 10-20,000
different types of items. Further, we show
that the bootstrap methodology works
significantly better than the existing
methodology based on mean days of supply.
In fact, we demonstrate performance
equivalent to the existing system with a
reduced inventory at one-half to one-third
the cost; conversely, we demonstrate
significant improvement in fill rates and
other inventory performance measures for an
inventory of the same cost.

INTRODUCTION

One almost universal function of any
military supply system is to warehouse
goods in anticipation of customer demands.
Similar requirements exist in portions of the
commercial sector and other operations
where the advantages of holding stock
locally offset the cost of maintaining and
managing the stock. A particular advantage
to the military is the ability to satisfy a
customer demand nearly immediately with
on-hand stock, using the local system as a
buffer between the customer and the
vagaries of the rest of the supply system.
Maintaining  local  stocks requires
determining which items to stock and in
what quantities. In peacetime, overstocking
ties up funds in assets that turn over very
slowly and in wartime results in masses of
unused material that must be transported or
left behind.  Understocking defeats the
purpose of maintaining local inventory when
items are not available and can have a large
impact on wartime sustainability.
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For a particular stocked item, the
reorder point (ROP) specifies the stock level
at which a replenishment order is placed.
The ROP is usually set to provide an
acceptably low risk of stock-out between the
time when a replenishment order is placed
and subsequently received (which, in a
system with automatic reordering, is the lead
time). The quantity of demands occurring in
a lead time is referred to as the lead time
demand (LTD). Setting the ROP is a trade-
off between the cost of incurring one or
more stock-outs and the cost of holding
additional stock (commonly called safety
stock) to cover the possibility of
unanticipated lead time demand. In the
military, the penalty for such a stock-out is
delay time during which the customer must
wait while the part is ordered and delivered
from the next higher echelon of supply. In
the commercial world, stock-outs may
represent lost sales as customers go
elsewhere to satisfy their demand.

Classic inventory theory models the
distribution of an item’s demands
parametrically, making particular
assumptions about the variability of
demands and lead times when setting the
reorder point. Poisson, normal, and negative
binomial distributions are routinely used.
Such distributions allow simple calculation
of the demand’s variance so that the ROP
can be specified in terms of a mean demand
plus some multiple of the standard
deviation. If the distributional assumptions
are appropriate then this approach works

well. However, such distributional
assumptions rarely apply to United States
Marine Corps (USMC) data.

We address this problem with an
empirically-based  resampling  strategy,
which uses bootstrapping techniques on
historical demand data, to estimate the lead
time demand distribution.  From this,
quantiles for a given probability of stock-out
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. nonparametric or

can then be used to set ROPs. We also
derive a simple inequality from Markov’s
Inequality, which uses only the mean
demand rate and mean lead time, to identify
whether existing ROPs are set too high. We
demonstrate the utility of these tools on
actual USMC supply data.

Related Research

We focus on reducing quantities of
stock (depth) by establishing reasonable
reorder points while maintaining control of
the service level provided to the customer,
instead of attempting to minimize a cost
function. We seek to do this from an
analytically sound basis while relying on an
extremely selective set of assumptions. This
is because we do not have reliable estimates
of standard cost parameters, and can
assemble only limited information relating
to the distribution of lead time demand
(LTD). Fortunately, earlier work provides
suitable  precedent for  approximate,
“distribution-free”
approaches to establishing inventory reorder
points without reliance on restrictive
assumptions about demand or lead time, or
on cost parameters that can be misleading or
hard to obtain in practice (see, e.g., Selen
and Wood, 1987).

Many of these approaches have been
prompted by concern with appropriateness
of ascribing the normal distribution to LTD.
Tyworth and O’Neill (1997) review the
salient arguments, and examine the errors
associated with use of the normal
distribution to model LTD for the case of
fast-moving finished goods inventories
when the coefficient of variation is at or
below 0.4. They conclude that normal
theory adequately models cost and service
characteristics in that setting. Eppen and
Martin (1988) demonstrate instances in
which traditional normal-theory techniques
can produce unacceptable reorder points.




They illustrate that utilizing quantiles of the
LTD distribution, constructed from separate
demand and lead time distributions, can
produce more accurate reorder points, and
provide a technique for establishing reorder
points when no distributional information is
available but a demand forecasting system is
in place. Tijms and Groenevelt (1984)
develop tractable two-moment
approximations for reorder points in (s, S)
inventory systems in the presence of service
level constraints. Approximation accuracy
decreases with increases in the LTD
coefficient of variation and for high desired
service levels; the approximations also rely
on relatively accurate calculation of the first
two moments of the distribution of LTD.

Azoury and Brill (1992) determine the
stationary distribution of the net inventory
process in an (s, S) inventory system as a
function of s and S. They assume demands
arrive according to a Poisson process and, in
the most general cases, that demand
quantities and lead times are i.i.d. following
general distributions. The authors suggest
that if these distribution functions are not
known, the family of generalized
hyperexponential distributions can represent
LTD suitably. Further, under the
assumption that LTD will exceed S —s with
negligible probability, their approximations
can be simplified substantially. The results
of Azoury and Brill are appealing, because
possession of the stationary distribution of
net inventory provides the capability of
relating policy parameters — reorder point
and requisitioning objective — to a number of
measures of effectiveness, among them a
number of service measures.

The “min-max” approach is a
conservative technique potentially
appropriate when faced with high stock out
or disposal costs, or with the requirement to
provide a consistently high service level.
Gallego (1992), Gallego and Moon (1993),
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Moon and Gallego (1994), and Ouyang and
Wu (1997) apply a min-max distribution
free technique to a variety of stochastic
inventory problems. Gallego (1992) studies
the continuous review (r, Q) inventory
problem seeking values of r and Q that
minimize long run average total cost when
only the mean and variance of LTD are
known. The two-phased approach first
determines the expected backorders incurred
corresponding to the worst possible
distribution of lead time demand possessing
the given mean and variance, and then
minimizes the corresponding long run
average total cost with respect to r and Q.
Moon and Gallego (1994) extend Gallego’s
analysis to a periodic review model with a
mixture of backorders and lost sales;
Ouyang and Wu (1997) allow mixed
backorders and lost sales while adding a cost
for lead time reduction and implementing a
service level constraint. They also provide a
tighter bound on stock out probability than
we do here, though they require the first two
moments of LTD to calculate it.

Several distribution-free techniques for
quantile estimation based on order statistics
appear in the literature. In an inventory
setting, Lordahl and Bookbinder (1994)
interpolate between closest order statistics of
observed lead time demands to estimate
quantiles of the LTD distribution. They
subsequently compare cost and service
performance of the resulting reorder point
estimates against corresponding
performance of reorder points developed by
assuming LTD 1is normally distributed.
Harrell and Davis (1982) develop a quantile
estimator based on a linear combination of
all order statistics and provide examples to
show that it is generally more efficient than
traditional simple interpolation. Both papers
indicate the conditions under which the
selected alternate methodology outperforms
their technique, Lordahl and Bookbinder's in




terms of service and cost, and Harrell and
Davis’ in terms of estimator efficiency.
Bookbinder and Lordahl (1989) and
Wang and Rao (1992) address reorder point
determination via a bootstrap procedure. In
Bookbinder and Lordahl (1989), the authors
compare reorder points determined by
bootstrapping from observed lead time
demands with traditional normal theory
across many different distributional forms of
LTD, incorporating cost and service level
measures in the analysis. They conclude in
the majority of cases that the bootstrap
performs as well or better than the normal
approach, and find it to be preferable when
LTD is bimodal, highly skewed, or
otherwise not well described by standard
distributions. Wang and Rao (1992) extend
the comparison and further develop
bootstrap reorder point estimates in the
specific case of correlated demand. Wang
and Rao (1992) bootstrap from observed
LTDs and discuss the application to LTDs
generated via Monte Carlo simulation.
Marine Corps consumable item retail
inventory systems possess characteristics
that frustrate attempts to implement many of
these techniques. The principal cause of
difficulty is that these inventories contain
large numbers of very different types of
items (usually greater than 10,000) with
widely varying demand patterns. Available
data represent a continuum between fast-
moving, commercially available products
and specialized military equipment with
much more sporadic demand and longer lead
times. It is not feasible to manage each item
individually, and specific assumptions
required for implementation of many
existing techniques do not apply to all, or
even most, items. For example, median
LTD coefficient of variation is 4.0; only 88
LTD distributions out of 32,650 examined
pass the Shapiro-Wilk test for normality;
and 90% of the items’ LTD distributions
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have skewness greater than or equal to 2 (a
normal distribution has skewness 0).

Even under conditions that depart from
the recommended criteria for coefficient of
variation and normality, the bootstrap
performed well in Bookbinder and Lordahl's
evaluations. We employed a similar
bootstrap technique because it
accommodates virtually any distributional
form, because it provided sufficiently
accurate estimates of the ROPs for our
requirements, and because it could
ultimately be implemented in the field
within an algorithm that did not require
sophisticated user input. We show that our
application of the methodology to actual
Marine Corps data results in an inventory
that costs one-half to one-third of the current
inventory yet performs just as well. We also
show that using our bootstrap methodology
to define an inventory with a value of the
existing inventory results in significantly
improved system performance as measured
by multiple inventory performance metrics.

The paper is organized as follows. In
the “Background” section we provide
information about the Marine Corps’ supply
system and some basic inventory theory,
including how the USMC currently
determines inventory ROPs and the metrics
it uses to measure supply performance. In
the “Using the Bootstrap to Calculate
Reorder Points” section we describe how to
apply our bootstrap methodology to
calculate ROPs. We follow this with a
section on the “Evaluation of Reorder Point
Performance with Actual Marine Corps
Data” which: (1) evaluates our bootstrap
methodology versus the existing USMC
method and other techniques recommended
in the literature for ROP calculation; (2)
presents a service-dependent upper bound on
the reorder point based on Markov’s
Inequality; and, (3) illustrates bootstrap ROP
performance using real demand data.




“Evaluating the Overall Effect of the
Bootstrap ROPs” describes the results of a
more detailed experiment, incorporating
bootstrap reorder points into a realistic
evaluation of overall inventory performance.
We conclude in the “Summary” section with
a discussion and recommendations. A
glossary of acronyms is provided at the end
of the paper.

BACKGROUND

Methods of managing local stock vary
by military service (and commercial
organization) and may be comprised of one
or more echelons of supply. Here we only
consider the problem from the perspective of
local (“retail”) inventory established to serve
a set of local customers; it consists of a
single set of stocks which are periodically
replenished as necessary from an unspecified
higher echelon or echelons of supply. This
is essentially the arrangement at each Marine’
Expeditionary Force’s (MEF) General
Account. The General Account is a local
inventory, physically located with the MEF,
consisting primarily of repair parts but also
including many other types of consumable
material. The dollar value of the on-hand
stock in a typical MEF General Account
ranges between 20 to 30 million dollars, for
which the managing organization has an
annual budget of the same order of
magnitude that is allocated incrementally on
a quarterly basis. The General Account may
stock between ten and twenty thousand
individual types of items (“lines”) identified
by national stock number (NSN), the
military equivalent of the commercial stock
keeping unit (s.k.u.), and the inventory may
experience anywhere from two to three
hundred thousand requisitions a year. A
requisition is a request by a specific
customer for one or more units of a
particular item; thus the inventory

experiences a total number of demands far in
excess of the number of requisitions.

Establishing a local inventory requires
determining both which items to stock and
the amount of each item to stock. The
Marine Corps' decision to stock an item at
any particular General Account depends on
several factors. If there is no advance
knowledge of special need for an item, the
decision to stock it is based on local usage
and the item's Combat Essentiality Code.
Combat essential items not previously
stocked cannot normally be stocked unless
the General Account has issued three or
more of the item in the previous 12 months;
non-combat essential items require a
minimum of six demands in 12 months
(United States Marine Corps Intermediate-
Level Supply Management Policy Manual,
1992). Decisions to stock particular items
on criteria other than minimum usage—
decisions the Marine Corps calls
"nondemand-supported"—are made on an
exception basis and reviewed, at least
annually, apart from standard retention
criteria.

When an inventory manager at a
General Account decides, based on the
preceding criteria, to stock an item, its
subsequent management follows a standard
(s, S) inventory policy. The reorder point s
is the ROP; the order-up-to level S is called
the requisitioning objective (RO).  The
Marine Corps refers to the difference S — s
as the operating level, a quantity it
establishes separately from the ROP.
Inventory position—on-hand plus due-in
minus backorders—triggers a replenishment
order when it reaches the reorder point (a
computer provides a recommendation to
make the buy, but personnel at the General
Account must submit the replenishment
order manually).

The remainder of our discussion
centers principally on determination of the




reorder point. This determination requires
measurement of demand and lead time as in
many inventory systems. We refer to lead
time as the elapsed time between when the
inventory position reaches the ROP and
when the subsequent replenishment order is
available to satisfy future demands. The
order and ship time (OST) is a component
of the lead time and is usually considered to
be the time from when the order is placed
with the next higher echelon to when it is
received locally. If the replenishment orders
are placed automatically when the ROP is
reached, and if the time to re-stock the local
inventory is negligible, then the lead time is
equal to the OST.

Current Methodology
The Marine Corps currently utilizes
days of supply, a demand-dependent unit of
measure, as the primary way to set the
requisitioning objective and ROP. One day
of supply is the mean daily usage of an item
over some past time period, such as the last
year. At the 1** Marine Expeditionary Force
(I MEF) General Account, the ROP is
defined as the sum of
e safety stock of either 15 or 30 days of
supply depending on the item’s Combat
Essentiality Code: 30 days of supply for
items coded as combat essential, 15 days
of supply otherwise, and
e lead time stock based on the estimated
OST (converted to days of supply) for
each item.
Thus, for a hypothetical combat essential
item with a historical mean demand of 3 per
day, and an OST of 11 days, the ROP would
be 123 (30 days of supply x 3 units/day + 11
days of supply x 3 units/day). The
requisitioning objective for an item is
defined as the ROP plus an operating level
of 60 days of supply. For the hypothetical
item, the requisitioning objective would be
set at 303 units. The Army uses essentially
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the same methodology, differing in the
specified days of supply for the operating
level and safety stock and in the
methodology for estimating item lead times.

There are a number of weaknesses
with this methodology. First, and most
importantly, it eliminates information about
demand variability contained in the data by
only using means. For example, an item that
deterministically has one demand for one
unit a day for 365 days has exactly the same
days of supply, and thus the same
requisitioning objective and ROP, as another
item that only has a single demand on one
day for 365 units and no demands in the
other 364 days. Second, calculating lead
times for individual items that have
infrequent replenishment orders using the
observed OSTs may result in poor lead time
estimation because the sample sizes are
small. Finally, for organizations that do not
use automatic replenishment ordering, the’
OST does not represent the complete lead
time. This is because the time from when an
item’s inventory position exceeds the ROP
until the time the replenishment order is
placed is not included in the OST. If this
time period is significant then the safety
level does not reflect the entire time the item
was at or below the ROP and at risk of
stock-out.

Performance Metrics

The usual metric for measuring
inventory performance is fill rate, which is
the ratio of demands filled out of local
inventory to the total number of demands
presented over some time period. This
measure of performance can be subdivided
into two others: The accommodation rate is
the ratio of the number of demands for items
locally stocked to the total number of
demands, and the satisfaction rate is the
ratio of the number of demanded items filled
out of inventory among the set of demands




for items which are locally stocked to the
total number of demands for items which are
locally stocked. That is, the satisfaction rate
is a conditional fill rate for only those
demands which are stocked locally, and the
overall fill rate is the product of the
satisfaction and accommodation rates.

Fill rate alone is not a sufficient
measure to characterize how well an
inventory supports its customers because (2)
it treats all items equally and (b) it does not
capture the effects on the customer who
needs a set of items. For example, the
Marine Corps’ General Accounts provide
repair parts for broken equipment. It is
common for a mechanic to need a complete
set of parts to finish (and sometimes even to
start) a repair. Thus even with an 80 or 90
percent fill rate it may often be true that
repairs are held up because one or more
parts must be ordered from the next higher
echelon of supply. The result is that if one
part cannot be filled out of the local
inventory then it might just as well have
been that none of the parts were filled since
the entire repair is likely to have to wait for
the final part to arrive anyway. The Marine
Corps measures this type of inventory
performance via the Equipment Repair
Order (ERO) fill rate metric. An ERO is
essentially a work order for the repair of a
piece of equipment, a portion of which lists
the required repair parts. The ERO fill rate
is the fraction of important EROs for which
all of the high priority parts were
immediately available from the local
General Account inventory. (Specific
details regarding what constitutes an
“important” ERO, a “high priority” part, and
how “immediately available” is defined can
be found in Fricker and Robbins, 1999.)
Typical General Account fill rates are
between 50 and 70 percent; typical ERO fill
rates are between 40 and 60 percent.

USING THE BOOTSTRAP TO
CALCULATE REORDER POINTS
As discussed in any standard inventory

theory text (see, for example, Tersine, 1994,
or Arrow, Karlin, and Scarf, 1958), there are
three basic inventory problems, listed below
in order of increasing complexity:

1. Fixed demand and lead time,

2. Stochastic demand and fixed lead

time, and

3. Stochastic lead time and demand.
Also, some production planning models may
assume deterministic demand and random
lead time, which results (like cases 2 and 3)
in the definition of a lead time demand
distribution. The first case will not be
considered further as it is trivial to solve
arithmetically (though we note that the
bootstrap methodology to be described
applies equally well to this case as to the
more complex, stochastic cases). For the
second and third cases, let ¢ denote time for
some basic unit (days, weeks, etc.) and let D,
denote the number of items requested (the
demand) during period 7. Let L denote the
lead time (in the same units as ?) for an
item’s replenishment order and let & denote
the probability that a stock-out occurs during
the lead time. Assume that the demands D;
and the lead times L are both i.i.d. from

unspecified distributions, and D, and L are
J+L

independent. Let X(J,L)= ZD, represent

t=J+1
the cumulative demands occurring in L
successive time periods after some time J
when the inventory position is first at or
below the ROP. Denote P{X(J,L)< x}as
F(x), the distribution function of LTD. To
achieve a particular probability of stock out
when the inventory is at the ROP, set
x=F'(1-«)where x is the chosen ROP
and then P{X (J,L) > x} =a. We refer to &

as the risk of stock-out; the quantity 100(1-
o) is often referred to as the service level.




Both Bookbinder and Lordahl (1989)
and Wang and Rao (1992) bootstrap
observations from the LTD, assuming that
actual observations for m lead times are
available,{X,..., X, }. We do not use this

approach for two reasons: (1) Our data do
not contain information about the inventory
position, so we cannot identify the actual
lead time periods, and (2) under the
assumption that demands are independent of
inventory position, only using data from the
lead times ignores the majority of demand
data. That is, if demands are independent of
inventory position, then for any particular L

it follows that X (J,L)= X (j, L) for j=1,2,...,
and so we need not restrict the data to only
the lead time periods.

Under these assumptions, for a fixed
lead time L, the bootstrap (Efron and
Tibshirani, 1993) can be used to create an

empirical distribution F as follows. Suppose
that for each item i a set of historical
demands exists for N periods: D;,...,Dy,
NnL. For a fixed lead time of L periods, the
bootstrap methodology is applied by
randomly drawing with replacement L

observations from {Dj,..., Dy } many, say M,
times. The bootstrap observations are
denoted Dy,,...D;;,, with the iteration
subscript suppressed for clarity. For each

iteration, then, the bootstrap demand
quantity for a lead time period is calculated

L
as X'=ZID;'I.). The empirical
=

distributionl:",-is calculated from the M

bootstrap statistics, X' ={X/,..,X} } and
the ROP is then set choosing the quantile
corresponding to the desired risk «,

ROP =F'(1-0).
For the variable lead time problem, the
bootstrap methodology is further adapted by
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first randomly sampling from an empirical
distribution of lead times and then
resampling the number of demand periods
corresponding to the chosen lead time. For
example, given an empirical lead time
distribution for item i a lead time is
randomly selected; say ! was chosen, then /
periods are randomly drawn from the

historical data, from which X‘(l)is

calculated.  As before this process is
repeated M times, where at each iteration a
different lead time is randomly drawn from
the historical lead time distribution.

Since the empirical distribution Fis
discrete, some method will generally have to
be employed to select the quantile which
gives the risk closest (in some sense) to the
specified risk. Efron and Tibshirani (1993)
describe various methods for selecting
quantiles which involve ranking the
bootstrap observations and then choosing
the @ - M observation (with rules for handling
o -M not integer). In our work here we set
the ROP to the value in the empirical
distribution with the risk closest to the
desired risk in terms of Euclidean distance.

That is, ROP;={x: min F (x)—al}, where F

is the cumulative tail function of F (i.e.,
F(z2)=1-F(2)). This is a more
conservative approach than ranking, in the
sense that ranking will always choose an
ROP greater than or equal to our ROP, but
our method generally requires less computer
disk storage space because fewer than M
observations can be stored when there are
tied bootstrap observations. Other rules can
also be used to choose the ROP; for
example, we will describe an interpolation
scheme by Lordahl and Bookbinder (1994)
in “Comparison of Bootstrap, Order-
Statistics, and Normal Approximation
Techniques” subsection.




Intuition Behind the Methodology

Some intuition is in order for why our
approach works and is desirable. First,
consider a simple, ideal case in which the
lead time for an item is deterministically one
day and a large amount of historical demand
data is available. Then in order to evaluate
the risk of stock-out for setting ROP=x, one
would simply extract from the data all the
demands for each day after the inventory
position reached or exceeded the ROP and
count the fraction of times out of the total
number of cases that the next day’s demands
exceeded x. This fraction would be a good
estimate of the risk under the assumption
that the distribution of future demands is
similar to the distribution of past demands;
the larger the amount of past data and the
more similar the past and future demand
distributions the better the risk estimate.
This is the motivation for constructing an
empirical distribution of demands that
occurred in the lead time after a
replenishment buy order was placed, and it
is the motivation for Bookbinder and
Lordahl (1989) and Wang and Rao (1992) to
bootstrap directly from the LTD. However,
under the assumption that inventory position
and demands are independent we need not
restrict the data only to specific lead time
periods, so we can generalize in this simple
example by constructing the empirical
distribution using all of the daily demands.
Such an independence assumption is
generally very reasonable to make for
military supply systems, since demands are
made without any knowledge of inventory
position.

For lead times in excess of one day, we
can further generalize by starting at the
earliest day for which data is available and
taking blocks of days sequentially that
correspond to the lead time. This approach
would allow us to use all of the demand
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data, rather than only the lead time data
which is (typically) a small subset of the
demand data. The difficulty with historical
data, even when using all of the demand
data, is that it is generally insufficient to
construct a useful empirical distribution.
For example, for the Marine Corps we only
have two years of historical data; average
lead times of 20 to 30 days makes for too
few LTD observations from which to
construct a useful empirical distribution.
Furthermore, even if a significant amount of
historical demand data were available, the
older data could be suspect in terms of
distributional stationarity, so that one would
probably want to limit the amount of older
data utilized. Using the assumption of
independent daily demands and
independence between lead times and
demands, we overcome this obstacle by
resampling from the restricted historical
data, Dbootstrapping “alternate” LTD
observations which we use to capture the
uncertainty related to observing limited
demand data. From these alternate
observations, we then simply create an
empirical distribution just like in the
previous simple example.

Under the assumptions of independent
daily demands and independence between
lead times and demands, the methodology
we have described is essentially a simple
Monte Carlo LTD distribution estimation
scheme. That is, in this sense, one can think
about our approach as a convenient
computational method to estimate the LTD
distribution from the empirical distributions
of daily demands and lead times. The
connection of this scheme to the usual
bootstrap is not obvious, but it is an
important connection for generalizing to
more complicated data structures and
inventory situations, and for calculating a
measure of variability of the ROP point
estimate.




Generalizing Under the Bootstrap
Framework

Our application of the bootstrap might
seem to differ from its more common use in
estimating the standard error of a mean. To
illustrate the more usual application,
consider a set of observations Y;, Y>,...,Y,

and their mean, ¥ :—I—ZYk. In order to
n =

estimate the standard error of ¥, one applies
the bootstrap by resampling with

replacement M sets of n samples from Y,
Yz,...,Y,,Z Y{I,k), Y(g,k),...,Y(,,,k), k=1,...,M.

= I .
From these resamples,Y,, =—’;2Y(M), is
o

calculated for each k and then s.e.(Y)is
estimated,

A 1 M 172
VY - vV vV \2
s-e-(Y)—[ﬁ;(Yo ~Yu) ] ’
— 1 &_
whereY, =HZY(,‘). Depending on the
k=1

statistic being estimated, ¥, may be used as

the point estimate, or some other more
standard statistic. In this example, ¥ would
probably be used as the point estimate of the
mean, and the bootstrap standard

error, s.e.(?), as the measure of the point
estimate’s variability.

The key ideas in the bootstrap are (1)
resampling n observations with replacement
from the original n, and (2) thinking of these
sets of bootstrap observations as “new” data
that are representative of the underlying
probability distribution that generated the
original data. In our application, a
computational methodology equivalent to
the one we described in the first part of this
section is as follows:

1. Resample with replacement N

observations from {D ,..., D, } to
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generate the bootstrap
: i i
observations Dy, ,...Dy,.

2. Then generate a lead time observation [
(stochastically or deterministically) and
choose [ days randomly, with
replacement, from Dyy,,...D,y,-

3. Repeat step two M times,
calculate £, from{X/,..., X} },and then
choose the quantile corresponding to the
desired risk @, ROP, = I, (1~ ).

This represents one bootstrap ROP for item
i, which we could use as the point estimate
of the actual distribution quantile. To
calculate the standard error for this point
estimate, we would repeat steps 1-3 many
times and use those replications to compute
the standard error in the usual way described
above.

In order to see the equivalence between
steps 1-3 and the previous Monte Carlo-like
description, note that drawing a random
sample (with replacement) of lead time
demands in step 2 from the bootstrap
distribution, which itself was drawn
randomly with replacement in step 1, is
exactly the same as drawing a random lead
time number of demands from the original
set of demands. That is, the first two steps
simply collapse into one, in which !/
demands are randomly drawn with
replacement from the original set of N daily
demands. However, under autocorrelation
or some other type of data structure
assumption, the bootstrap demands resample
in step 1 might be conducted differently.
For example, we might bootstrap weeks or
months of demands and randomly assemble
the weeks/months into a new demand
stream. Similarly, with autocorrelation we
also might choose contiguous blocks of
demands to calculate the LTD in step 2.
Other techniques can also be employed to
account for data structure; see Efron and




Tibshirani (1993, chapter 8) for additional
discussion.

Specifically, under these more
complicated scenarios, steps 1 and 2 do not
reduce to the simple Monte Carlo approach
previously described. Further, if the
empirical lead time distribution is comprised
of limited data, one might also add a step in
between 1 and 2 to bootstrap the lead time
distribution. Thus, it is useful to think about
these types of problems in the more general
bootstrap framework. This framework helps
clarify the problem by decomposing into two
sub-problems: (1) incorporating  the
uncertainty due to limited observed data
(either demand, or lead time, or both) using
bootstrap resampling, and (2) estimating the
lead time demand distribution via Monte
Carlo or some other appropriate means.

EVALUATION OF REORDER POINT
PERFORMANCE WITH ACTUAL
MARINE CORPS DATA

Ultimately, application of a new
methodology to management of an inventory
system should be evaluated with respect to
the system’s standard measures of
performance.  Prior to conducting that
evaluation, we examine the current
methodology for setting reorder points first
on its own and then in light of alternative
methodologies, focusing on service level
performance directly attributable to the
reorder point calculation. Three principal
steps appear in our evaluation. We develop
and apply a conservative upper bound that
identifies ROPs actually in effect that are
unreasonably large by even the most
conservative assessment. We then compare
the bootstrap technique, as developed in the
previous  section, with two  other
methodologies based on performance against
several service targets. Finally, we perform
a cost and service evaluation of bootstrap

I

ROPs in comparison with actual ROPs
established at the I MEF General Account.

An Upper Bound for the ROP Requiring
Minimal Information

When on-hand inventory reaches the
ROP, the probability a stock out occurs, &,
is the probability that LTD exceeds the ROP.
If we denote LTD by X, lead time (in days)
by L, and demand (in items per day) by D,
and assume that L and D are independent,
then mean LTD isu, =pupu, providing

daily demands are also independent and
share a common mean. Further, assuming
demands are nonnegative, i.e., that quantities
returned to the General Account are
negligible, X is also a nonnegative random
variable. We can therefore apply Markov’s
Inequality (see, e.g., Ross, 1993) directly, to
obtain that

a=P(X > ROP) < x| 1)
ROP

or
roP <Hx. @)
(04

Ouyang and Wu (1997) provide a tighter
bound when a good estimate of LTD
variance is available.

Provided demand is nonnegative and
its mean constant over time, the reorder
point should not exceed the average demand
per period times average lead time divided
by the desired maximum stock-out
probability. The nonnegative demand
assumption may not be warranted if an item
experiences returns from users, but ignoring
these returns is consistent with providing a
conservative upper bound on the reorder
point. Further, the bound holds for any
distribution of demand and lead time;
variance estimates, unreliable for lead time
and poorly understood by Marines, are not
required. The bound is very weak, of course,
especially for low values of «; but it is easy




to calculate and can be used to highlight
unreasonably high reorder points.

We apply (2) to identify such reorder
points in the I MEF General Account, using
lead time data from July 1997 to June 1998
and demand data from February 1997 to
January 1998. To arrive at an estimate of
mean lead time, we add an assumed 7-day
per-order processing time to a reported
average OST of 26.1 days (exclusive of
items  experiencing  higher  echelon
backorders), totaling roughly 33 days.
Specifying a risk (service) level of one (99)
percent, we calculated the upper bound for
each item’s ROP using (2) and compared it
to ROPs in effect on 27 April 1998 to check
for unusually high actual ROPs.  This
resulted in 96 actual ROPs that were above
the calculated upper bound. In fact, 44 items
were between the upper bound and 150
percent of the upper bound, 26 were between
151 percent and 250 percent, and the other
26 were greater than 250 percent of the
upper bound (the most extreme at 55 times
the upper bound). The potential cost in
inventory for these items, defined as the
difference between the upper bound and the
ROP, is more than $350,000. That figure
could be much larger if the actual ROP and
on-hand stock could be set substantially
lower than the upper bound. In any case, it
is clear that there is applicability of the ROP
inequality in practice and the ROPs for these
96 items deserve further scrutiny.

One cautionary note is in order when
applying this bound. The ROP inequality,
(2), is based on the means of the lead time
and demand distributions, which will be
unknown in practice. In applying (2) the
means ®@p and @ have to be estimated
based on averages taken from data, so the
accuracy of the resulting bound will be a
function of (a) the accuracy of the estimation
of the means and (b) the adequacy with
which the assumptions, used in the
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derivation of the bound, are met. Thus, the
accuracy of the bound must also be
considered when evaluating whether an ROP
1s too large.

Comparison of Bootstrap. Order-Statistic,
and Normal Approximation Techniques

The literature suggests that some
techniques, such as the normal
approximation for LTD, may be
inappropriate for Marine Corps inventory
systems. Another  distribution-free
approach, the order-statistic method of
Lordahl and Bookbinder (1994), provides an
alternative to the standard parametric
techniques. Our primary basis for
comparing these methodologies and the
bootstrap technique is the ability of each to
develop reorder points that can attain a
specified service target with relative
accuracy and precision.

Lordahl and Bookbinder (1994)
estimate the 100g™ quantile of LTD as
follows. For a LTD sample of size », find
j+w=(n+1)q, wherej=|_(n+1)q_|, the
largest integer less than (n+1l)g, and
0<w<1. The reorder point providing an
expected service level of g is then the
weighted sum (1-w)X; +wX|,,;, which

is a simple linear interpolation of the two
observations  whose empirical CDF
percentiles bracket g. Alternatively, under
the assumption that the LTDs are normally
distributed, Tersine (1994) selects the 100g™
quantile from the normal distribution
function best fitting the observed LTDs. In
our implementation of these methods, we
expressed any fractional reorder points to the
next higher integer and followed the
procedures previously established  for
determining reorder points from
bootstrapped LTD distributions.




For the basis of comparison, we
obtained daily demand data corresponding to

191 items with relatively high demand: for
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Figure 1. Comparative performance of the bootstrap (bootXX), order statistic (orderXX), and normal (normalXX)
approximation methods of computing reorder points. Box plots show the mean performances of 191 items when
reorder points are calculated according to the specified method for target service level “XX”. While the bootstrap
and order statistic techniques are on target (and virtually indistinguishable in terms of performance), the normal
approximation method deviated significantly from established performance targets. It overstocked at the 75% target
service level and failed to meet the 95% and 99% service level targets for more than half the items in each case (as

shown by the interquartile range).

each item selected, annual quantity
demanded exceeded 200 items on more than
100 requisitions. One year (February 1997
to January 1998) of daily demand data from
I MEF were used. To determine reorder
points for all three methods, we generated a
single LTD sample of 1,000 observations by
assuming a fixed 15-day lead time
(approximately the median 1998 OST) and
drawing at random, with replacement, 15
days’ demands to total for each observation.
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The bootstrap, order statistic and normal
approximation methods all used these same
1,000 observations in determination of
reorder points targeted at service levels of
75%, 90%, 95% and 99%. For each service
level and reorder point methodology, we
generated 100 new LTD observations using
the same demand data and computed the
frequency with which stock outs were
observed. We repeated this experiment 30
times per item and calculated the mean




service level attained for each item; the
results appear in Figure 1.

Figure 1 shows that, even when
evaluated against the same data that
produced them, reorder points determined by
the traditional normal approximation are not
robust enough for application to Marine
Corps retail inventories such as the General
Account. We calculated 95% confidence
intervals for mean service level attained by
each technique at each service level target;
the confidence intervals for normal
approximation performance included the
intended target only at 90% service.
Confidence intervals for bootstrap and
order-statistic ROP performance always
contained the intended targets. We similarly
examined a sample of 100 items with low
demand with comparable results. Further, as
Figure 1 suggests, ROPs developed by the
normal approximation technique varied
widely in performance from item to item. A
one-sided, approximate F test of the normal-
to-bootstrap performance variance ratio
rejected the null hypothesis that the ratio
was one in every case at any reasonable level
of significance. In fact, we should expect
the item-to-item variance in service level
performance to be higher for the normal
approximation than for the distribution-free
techniques, since the degree to which the
approximation suitably represents LTD
varies by distribution of LTD for each item.

The  distinction  between  our
methodology and the order statistic method
of Lordahl and Bookbinder deserves remark.
We determine reorder points from the
cumulative  distribution  function  of
bootstrapped LTD observations, selecting
the closest actual observation from the data
instead of interpolating. The order statistic
method interpolates between order statistics
of actually observed LTDs. The principal
difference, then, between the two methods is
not in selection of a quantile, but in the use
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of the bootstrap to obtain a LTD
distribution. In this example, because the
LTD distribution was simulated using
resampling the only difference between the
two procedures was in quantile selection.
Thus, the performance difference between
the two techniques was small. In practice,
however, there could be greater differences
in performance, particularly when the
observed LTDs are few (often only one),
such as with the Marine Corps data.

A Test of Bootstrap ROPs

The preceding comparison  of
methodologies is a fair means of evaluating
methodologies relative to one another,
because it uses the same underlying
empirical LTD distribution to evaluate
service performance as it does to develop
reorder points. This section shows how our
bootstrap ROPs perform — in terms of
service and cost — in a more realistic setting,
when they are developed with historical
demand data and evaluated against
subsequent (actual) demands. We compare
these reorder points against those
determined by the Marine Corps for the
same items, and present a comparison of
number of lines (different types of items)
stocked and inventory dollar value between
the actual I MEF General Account and
alternatives to it as developed with the
bootstrap technique.

Table 1 shows the results of a
controlled comparison of desired and
achieved service levels for a fixed 30-day
LTD and five service levels. We determined
the bootstrap ROPs from data collected in
the 12 months preceding February 1998 and
evaluated them in five 30-day periods taken
from calendar year 1998. Table 1 displays
the desired service level against the
proportion of items whose 30-day LTD did
not exceed the ROP. For a given risk level
and perfectly set ROPs, the expected number




of items experiencing a stock out should be
the risk level multiplied by the total number

of items.

Percent of Lines that Did Not Stock Out - -
Service Level: for Five 30 Day Periods (by Date) .
(1-¢8) x 100% | 1-30 March | 31 March - 30 April — | 30 May - 29 June —
29 April 29 May 28 June 28 July
80.0 85.7 69.6 85.5 88.1 84.3
85.0 89.2 77.5 89.0 91.4 88.8
90.0 92.4 85.0 92.6 94.1 92.7
95.0 95.4 91.0 95.3 96.4 95.6
99.0 97.6 96.0 97.7 98.3 98.2

Table 1. Comparison of the probability of not stocking out (1-¢8) to the actual observed rate for five thirty day
periods for all lines (different types of items) that had a positive (nonzero) bootstrap ROP.

Table 1 shows that the 30 day fixed
lead time bootstrap ROPs for a given service
level track well when compared with the
actual demands observed for five 30 day
periods. Some bootstrap ROPs were zero;
the table does not include those items. For
all but one of the columns the actual results
are slightly conservative for the smaller
service level values, most likely as a result
of the decision rule for selecting the ROP
from the empirical distribution. However,
the second column (31 March — 29 April)
does show a period in which the demands
were unusually high in comparison to the
past year’s demands (upon which the
bootstrap calculations were based). This
result demonstrates that any methodology,
no matter how good, cannot perfectly predict
the future.

Also note in Table 1 that, as the risk
becomes very small, roughly «<0.05, the
percentage of items not stocking out falls
below the specified service level. This is
because at very low risk levels
around=0.01 the bootstrap essentially
reduces to the sum of the maximum 30 days
of demands observed in the past year and,
again because the past is not always a good
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indicator for the future, some items
experience demands in the new period
greater than the previous year’s maximum.
However, as the table shows, at small risk
levels the difference between desired and
actual performance is quite small—usually
within a percentage point or two.

Overall, Table 1 demonstrates that our
bootstrap methodology using independent
sampling by days works well, from a
practical standpoint, for these data. In order
to get some insight into the variability of the
ROP estimates, we bootstrapped standard
errors of the estimated ROPs for the 191
items with relatively high demand selected
in the “Comparison. of Bootstrap, Order-
Statistic, and Normal Approximation
Techniques” subsection. For various service
levels, we found that increasing the number
of resamples from 1,000 to 10,000 decreased
the standard errors by about a third. In
particular, at &=0.05 the average coefficient
of variation for the 191 items decreased
from around 11 percent to about four
percent. However, increasing the number of
resamples per item from 1,000 to 10,000 did
not affect the aggregate results shown in
Table 1 in any appreciable way, nor did




sampling by weeks instead of days. We
therefore chose to use 1,000 resamples in
our ROP calculations.

After  evaluating service level
performance with fixed lead time, we
calculated a new set of ROPs using the
bootstrap methodology for a variable lead
time as follows. One year’s worth of I MEF
requisition data (1 February 1997 to 31
January 1998) was compiled into daily
demands by item. That is, a matrix listing
each item by total quantity requisitioned
daily was created that showed how many
units of each item were ordered on a day-by-
day basis from the I MEF General Account.
We fit a common log-normal distribution to
aggregate lead time observations for
replenishment orders. We then calculated
the bootstrap ROPs (for variable lead times)
as described in the “Using the Bootstrap to
Calculate  Reorder  Points”  section,
performing the resampling using SAS
(1990).

We  defined the requisitioning
objective, for those items with ROP;>0, as
ROP;+max{1, round(Z DOS;)}, where DOS;
is the average demand for item i in terms of
days of supply and the round function
rounds the quantity to the next higher whole
integer if the decimal fraction was greater
than or equal to one-half, and it rounded
down otherwise. (If ROP;=0 then the
requisitioning objective for item i is also
zero.) That is, the operating level was set to
a fixed days of supply, Z. For the bootstrap
requisitioning objectives and ROPs, the on-
hand quantity was randomly set uniformly
between the ROP and requisitioning
objective for each item. We refer to the
bootstrap requisitioning objectives, ROPs,
and derived on-hand quantities as the
bootstrap GABF'.

Table 2 compares the value of an
inventory based on these new bootstrap
GABFs to the actual value of the 27 April
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GABF. In the third column, the table shows
the results from the bootstrap GABF with a
risk (&) equal to 0.05 and an operating level
(OL) of 30 days of supply. The results show
that roughly the same number of lines
(different types of items) are stocked
compared to the actual GABF, with a value
at the ROP of less than half the actual
GABF’s value at the ROP. The other
bootstrap GABF options illustrate how the
number of lines and the dollar value of the
requisitioning objective and ROP inventory
increase for various values of decreasing
risk.

Figure 2 compares the actual and
bootstrap ROPs for the 35,068 items that
had a positive ROP under either the actual or
the @=0.01 bootstrap methodologies. Of
the 35,068 items, 21,857 had a positive
(nonzero) bootstrap ROP but were not
actually stocked (i.e., the actual ROP was
zero); 2,423 items were not stocked by the
bootstrap methodology but had positive
actual ROPs; and, 10,758 items had both
positive actual and bootstrap ROPs.
Visually there seems to be some consistency
in the center of the graph, though the log-log
scale tends to mask that small differences off
the plot diagonal may be large actual
differences.  Also, over-striking plotting
symbols on the two axes visually disguise
the fact that that ten times as many items
were not stocked by the actual methodology
as compared to the bootstrap methodology
and that twice as many points are plotted on
the axes as in the center of the graph. That
is, the center of the graph contains 10,758
points, and the vertical axis at bootstrap
ROP=0 has 2,423 points, while the
horizontal axis at actual ROP=0 has 21,857
points.

Of those items stocked by both
methodologies, 46% of the time the
bootstrap ROP is greater than the actual
ROP and, conversely, 39 percent of the time




the actual ROP is greater than the bootstrap
ROP. However, note that 77 percent of the
complete list of 35,068 items had smaller
actual ROPs because so many of them were
simply not stocked wusing the current

methodology. Also, note that the value at
the ROP for these two options is virtually
the same; thus, the bootstrap ROP stocks 2-
1/2 times as many types of items for the
same cost. Under the assumption that the

Actual | -~ .- Bootstrap GABFs TR
GABF a=0.05 a=0.03 «=0.01 o =0.01
OL=30 0OL=30 OL=30 OL=90
Number of lines
stocked 13,159 14,014 17,682 32,645 32,645
Value at the ROP | $13.5M $4.7M $6.7M $13.2M $13.2M
Value on-hand $25.5M $5.1M $7.2M $13.7M $21.3M
Value at the
requisitioning $23.6M $6.4M $3.8M $16.9M $24.5M
objective

Table 2. Comparison of the actual GABF (27 April 1998) to various alternative bootstrap GABFs. The operating

level, OL, is specified in terms of days of supply.

log(Actual ROP+1)

<
~
S

log(Bootstrap ROP+1)

Figure 2. Comparison of the actual 27 April GABF ROPs to the Bootstrap ROPs.
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bootstrap ROPs better reflect the variability
of demand, it seems clear that the existing
methodology must unnecessarily overstock
expensive items.

Examples of Bootstrap ROPs

In order to demonstrate how the
bootstrap ROP works it is instructive to look
at some specific cases. Table 3 shows four
items with varying demand patterns along
with three possible bootstrap ROPs
corresponding to risks of 0.01, 0.05, and
0.10. The first two cases had a total of five
requisitions for the year from February 1997
to January 1998, with varying total
quantities requested. The last two cases
have a larger number of requisitions.

Case 1 is an item that had five
requisitions with a total of 488 items
requested for the 12 month period. For the
three different risk levels considered,
a=0.10, 0.05, and 0.01, the bootstrap ROPs
are 50, 108, and 282, respectively. Note
that, as the allowable risk is decreased
(equivalently, the service level is increased),
the ROP increases. Case 2 shows a different
situation in which 5 expensive items
($1,652.00 each), each on a different
requisition, all occurred in a short span of
time. In this case, the bootstrap ROPs for
the higher risk levels set the ROP to zero,
but for the smallest risk (highest service
level) it is set to five units. Here the
methodology  performs  according to
intuition: It either sets the ROP to cover the
entire batch of 5 or not to cover them at all,
depending on the risk that the inventory
manager is willing to assume.

Cases 3 and 4 show items with higher
requisition activity. Case 3 shows that the
largest bootstrap ROP can be smaller than
the greatest month (March) if the
requisitions  within  that ~month  are
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sufficiently spread out over time. Case 4 has
a high number of requisitions but a low
number of units per requisition. Taken
together, the four cases in Table 3 cover a
wide spectrum of demand patterns and unit
prices. All of these cases show that the
bootstrap methodology sets reasonable
ROPs that correspond with intuition, and
they illustrate how an inventory manager can
specify a risk level and the methodology will
set appropriate ROPs.

Contrast the bootstrap ROP results to
the current USMC methodology, as shown
in the “USMC ROP” and “USMC RO”
columns (the latter denoting requisitioning
objective). For every case, not only is the
ROP insufficient, as illustrated by the fact
that most cases have multiple months for
which the ROP would not cover demand,
but even the requisitioning objective is
insufficient for at least one month in every
case. Indeed, the USMC methodology, for
these four cases, looks similar to the a=0.1
bootstrap case, which means that roughly ten
percent of the items should stock out when
they are at the ROP. Multiply this rate times
thousands of items and the number of stock
outs is large.

EVALUATING THE OVERALL EFFECT
OF THE BOOTSTRAP ROPS

Evaluating the bootstrap ROPs in
relation to the existing ROPs gives little
indication of how a new bootstrap GABF,
based on the new ROPs, would actually
perform in the real world in terms of
meaningful inventory metrics. To evaluate
this question, a more detailed set of
experiments was conducted in which the
performance of the entire General Account
was simulated, starting at an initial inventory
position and then “playing back” all the




demands for eight months while measuring the performance of the inventory.
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In performing such a “real world”
experiment, we did not seek specifically to
obtain results of an analytical nature.
Instead, we compared the performance of a
simulated system with that of a real
inventory (the I MEF General Account) over
a specific period. In order to make the
comparison meaningful to inventory
managers at the I MEF General Account, we
had to depict how the simulated system
responded to known, identifiable events that
occurred during the specific period. In this
way, both the simulated system and the real
inventory were subject to the same resource
constraints and had the same sequence of
problems to solve. Collection of summary
statistics from the simulation enabled
comparison of actual and simulated metrics
over the period of interest. Determination of
reorder points for each item in the simulated
system relied on empirical demand and lead
time distributions collected prior to the
period of interest, and proceeded according
to the procedures we have explained.

Such an experiment required making
assumptions for transaction information that
was not available, such as the exact order
that daily demands arrived at the General
Account. It also required simulation of the
stock replenishment process.  However,
given that such assumptions were equally
applied to all experiments, and that the
performance of the system using an actual
inventory starting position results in system
performance (as measured by inventory
metrics such as those described in
“Performance Metrics” subsection) that
mirrors real world system performance, one
would expect that bootstrap GABF
Aimprovements shown in the simulation
would portend similar improvements in
practice.
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In general, the experiments were
conducted as follows:

1. Begin with an initial inventory position
from either the actual GABF (27 April
1998) or a bootstrap GABF (calculated
using February 1997 through January
1998 demand data). Set the on-hand
stock at the actual on-hand stock for the
existing GABF or, for the bootstrap
GABF, uniformly between the
requisitioning objective and ROP for
each item and start with a “clean slate”
with zero due-in and due-out for all
items.

2. Take eight months' of “new” demand
data from 1 May through 31 December
1998 and play these back day-by-day,
subtracting each demand from the on-
hand stock if available or adding to the
due-out if not (or “pass through” to the
next higher supply echelon in
accordance with standard Marine Corps
practices).

3. Track the inventory position for all items
over time. Weekly, rank those items
with inventory position less than or
equal to the ROP and place
replenishment buys subject to a fiscal
constraint equal to that normally
experienced in practice. Stochastically
assign due-in dates for the replenishment
requisitions and add them in to the on-
hand stock when they come in.

4. Maintain inventory statistics over the
course of the simulation and calculate
overall performance metrics at the
conclusion of the quarter.

We specifically refer to these exercises
as experiments and not simulations because
the demand stream was actual data, as was
the 27 April GABF. Simulation only
entered into the experiment to account for
unobserved actions or unavailable data, such




- Bootstrap GABFs

Actual 3=0.05 «©3=0.03 3=0.01 «3=0.01

GABF OL=30 OL=30 OL=30 OL=90
ERO fill rate 53.9% 52.0% 58.2% 68.4% 66.3%
Fill rate 72.2 72.7 77.5 85.1 84.8
Satisfaction rate 81.0 86.9 89.7 92.3 91.9
Accommodation
rate 83.1 83.7 86.3 92.2 92.2

Table 4. Comparison of the actual GABF performance compared to various bootstrap GABFs. The operating level,

OL, is specified in days of supply.

as the order which the demands were
presented to the General Account or stock-
outs in the higher echelons of the supply
system. As much as possible we sought
simply to replay what actually occurred.
Indeed, in the experiments using the actual
GABEF, the resulting inventory metrics were
found to mirror those observed in actual
practice.

Table 4 shows that using the bootstrap
GABF with ¢8=0.01 increased the fill rate
from 72.2 percent (using the original GABF)
to about 85 percent and the ERO fill rate
increased from 53.9 percent to around 68
percent. These results were achieved, as
indicated in Table 2, with an on-hand
inventory value substantially less than the
existing inventory value, where the on-hand
inventory value for the 8=0.01 (OL=30)
bootstrap GABF was under $14 million as
compared to the actual on-hand inventory
position of almost $26 million. Perhaps the
most striking contrast comes with the
comparison of the ¢8=0.05 bootstrap GABF
to the actual GABF. This bootstrap GABF
showed roughly equivalent performance in
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all of the metrics in Table 4 using an
inventory with a fraction of the dollar value

_ of the actual GABF (Table 2). Essentially,

this bootstrap GABF achieved marginally
better performance for less than half the
price of the actual inventory.

Table 4 also shows the performance
improvements that can be achieved by the
bootstrap GABFs for various risk levels,
where we see that as the risk is reduced the
various metrics increase accordingly. For
example, the ¢8=0.01 bootstrap GABFs
have an accommodation rate of 92 percent,
which means that 92 percent of all items
requested had a positive requisitioning
objective (in contrast to 83 percent in the
actual GABF). Similarly, 92 percent of the
demands for items with a positive
requisitioning objective were actually filled
out of local stock (the satisfaction rate) with
the ¢8=0.01 bootstrap GABFs, while only
81 percent were with the actual GABF.
Even larger differences result for the fill
rates and the ERO fill rates. The last two
columns also demonstrate that the bootstrap
ROPs actually do account for almost all of




the demand variability in the safety level
because the various ‘“rates” change
insignificantly when the operating level is
tripled from 30 days of supply to 90 days of
supply.

We have also found that inventory
performance can be improved further by
targeting various classes of parts by dollar
value (expensive) and  appropriately
allowing an increased risk level. That is,
using a risk level of 1 percent for all parts is
to treat everything as highly important when,
in fact, there are certainly groups of parts
that could be allowed a higher risk with little
detriment to the inventory’s performance.
The inventory costs thus avoided by
assuming a slightly greater risk for a small
class of expensive parts can then be invested
in substantially decreasing the risk for a
large class of inexpensive parts. We have
applied such “dollar banding” techniques to
this problem and, for the same inventory
investment costs ($13 million at the ROP,
$17 million at the requisitioning objective),
have achieved a 90 percent fill rate (with a
98 percent accommodation rate and a 92
percent satisfaction rate) and a 76% ERO fill
rate.

Of course, the adoption of simple cost-
based rules in a military system may not
always be appropriate. The major point,
however, is that risk of stock out may be
assigned to classes of parts using the
bootstrap methodology. Price classification
is only one such approach; military
importance  might also be  used.
Additionally, the current use of a fixed 60
days of supply for the operating level, and
perhaps even the 30 days of supply used in
some of the bootstrap GABFs, is excessively
large. ROPs with appropriately sized safety
levels, as with the bootstrap ROPs, should
allow the inventory to function with smaller
operating level yet with a higher confidence
of fewer stock-outs. Smaller operating
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levels require smaller incremental outlays of
funding to buy items from the ROP back to
the requisitioning objective, and result in
other ancillary benefits such as smoothing
work flow in the warehouse.

SUMMARY

This paper has presented a
nonparametric bootstrap methodology for
setting inventory reorder points and a simple
inequality for identifying unreasonably high
ROPs. We have shown that an empirically-
based bootstrap method is feasible and
calculable for a large inventory, such as that
maintained by each Marine Expeditionary
Force. For the Marines we have shown that
the methodology should work significantly
better than the existing methodology, and it
is preferable to standard parametric
procedures based on normality assumptions.

In the “Evaluation of Reorder Point
Performance with Actual Marine Corps
Data” section, we applied Markov's
Inequality to identify 96 items with
unreasonably high reorder points (in only
one of the three active-force General
Accounts) to illustrate the inadequacy of the
existing methodology. Our approach of
extracting quantiles of a bootstrapped LTD
distribution resulted in no reorder points
exceeding these upper bounds.
Implementation of the bootstrap
methodology further demonstrated the
potential cost benefits of implementing an
improved methodology for stocking the
General Account.

It is worth noting that the bootstrap
methodology generates a complete empirical
distribution of LTD, from which all possible
ROPs (for each item) can be related to stock
out risks, useful for additional purposes. For
example, under fiscal constraints the
estimated LTD distribution could be used to
rank items by “risk differential,” meaning
the difference between the risk at the current




on-hand stock position and the desired stock
position (either requisitioning objective or
ROP). Such a ranking can then be used to
decide how to spend limited funds to
increase the inventory position of those
items most at risk of stock-out.

The bootstrap methodology can also be
generalized to more complicated inventory
problems, such as stocking repairable items.
In this scenario, an item that is issued is
coupled with a returned broken item that
may be repaired or refurbished and returned
to stock. Thus, stock replenishment comes
from two sources, the receipt of
replenishment orders for new items from the
next higher supply echelon, and the receipt
of refurbished items from a repair shop. The
two sources of supply will have differing
lead times, and the refurbished items are
likely to arrive in some stochastic manner.
Clearly this is a much more complicated
scenario that is not likely to lend itself to
simple analytic and parametric methods.
Yet, with the appropriate data, a bootstrap
scheme can be readily implemented which
would account for these additional
requirements and still estimate a LTD
distribution from which ROPs could be set
in the same manner as the other inventory
problems presented in this paper.

Future work will involve finding more
sophisticated methods for setting the RO and
accounting for the interaction between the
RO and the ROP. In particular, because the
risk being fixed in this methodology is
conditional on the inventory position being
at the ROP, the risk may be underestimated
for items typically ordered in sizeable
batches. This is because the inventory
position for such items could have a
tendency to overshoot the ROP, causing it to
be substantially lower than the ROP when
the replenishment order is placed. Also, in
keeping with most other approaches in the
literature, the bootstrap methodology does

not calculate an overall risk of stock-out—
arguably the quantity of most interest to an
inventory manager—which is both a
function of the ROP and of the operating
level. However, our results here have shown
that, within the bounds of reasonable
operating level choices, such issues are
second order considerations and the Marine
Corps would achieve significant inventory
performance  improvement using the
bootstrap scheme we have proposed.

The major requirements for the
bootstrap approach are (a) historical data on
which to run the bootstrap and (b), for large
inventories, sufficient computational power.
However, we have shown that the former
requirement can be met with one year’s
historical data and the latter, for MEF-sized
data, can be met with the processing power
of a high-end personal computer today.
Both of these problems are easily solved
with time, as more data are collected and as
personal computers become more powerful.
In such an environment, the use of
empirically based methods such as those

presented here become increasingly
attractive.
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Requisitioning Objective
Reorder Point

United States Marine Corps




DESCRIPTORS
Logistics, Nonparametric, Inventory, Lead Time Demand, Supply Systems, Markov’s Inequality,

Bootstrap, Military, United States Marine Corps

27




